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A B S T R A C T

Accurate protein solubility prediction is crucial in screening suitable candidates for food application. Existing
models often rely only on sequences, overlooking important structural details. In this study, a regression model
for protein solubility was developed using both the sequences and predicted structures of 2983 E. coli proteins.
The sequence and structural level properties of the proteins were bioinformatically extracted and subjected to
multilayer perceptron (MLP). Moreover, residue level features and contact maps were utilized to construct a
graph convolutional network (GCN). The out-of-fold predictions of the two models were combined and fed into
multiple meta-regressors to create a stacking model. The stacking model with support vector regressor (SVR)
achieved R2 of 0.502 and 0.468 on test and external validation datasets, respectively, displaying higher per-
formance compared to existing regression models. Based on the improved performance compared to its based
models, the stacking model effectively captured the strength of its base models as well as the significance of the
different features used. Furthermore, the model’s transferability was indirectly validated on a dataset of seed
storage proteins using Osborne definition as well as on a case study using molecular dynamic simulation,
showing potential for application beyond microbial proteins to food and agriculture-related ones.

1. Introduction

The food industry’s concern about the sustainability of animal pro-
tein has grown significantly in the past decade, given the 58 % increase
in meat demand over 20 years [1]. Recognizing the need for a more
sustainable food system, researchers are exploring alternative protein
sources, including plants, insects, and transgenic organisms [2]. How-
ever, selecting food proteins requires considering specific techno-
functional properties. Aqueous solubility, in particular, is vital as it
directly impacts various protein functionalities and key food charac-
teristics like mouthfeel and digestibility [3]. Consequently, there is a
growing demand for computational tools that can effectively predict or
screen protein solubility, which would aid in selecting the optimal
protein for a desired food product [4].

Protein solubility is a concept that researchers often approach with
different definitions. While various methods for measuring solubility
exist, such as induced precipitation using ammonium sulfate [5] or
concentration via ultrafiltration [6], protein solubility can be broadly
categories into relative and maximum solubility. Relative solubility re-
fers to the fraction of the protein that remains in the supernatant after

centrifugation [7]. On the other hand, maximum solubility pertains to
the amount of a protein that can be dissolved in water without observ-
able precipitation [8]. While maximum solubility aligns with the ther-
modynamic definition of solubility, it poses practical challenges in
measurements, especially in the case of food proteins where multiple
protein types are present. Therefore, a significant portion of research
conducted in the fields of food and agriculture science relies on the
relative definition of solubility [8].

With the advent of deep learning, researchers have adapted various
model architectures to effectively predict the physicochemical proper-
ties of proteins. Initially, the basic multilayer perceptron (MLP) was used
to predict protease cleavage sites [9] and to classify enzymes into six
families [10]. Improvements in MLP, such as dropout [11], Xavier
initialization [12], and diverse activation functions, have further
expanded its application in modeling the behaviors of proteins. Exam-
ples include classification of seed storage proteins by Osborne frac-
tionation [13], prediction of DNA and RNA binding sites [14], and
identification of amyloid protein [15].

While MLP enables modeling complex, non-linear phenomena, the
architecture struggles to handle the spatial arrangements of amino acids
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in proteins. To address this, spatial models like graph convolutional
network (GCN) have emerged as powerful tools. Originally proposed for
node classification tasks [16], GCN learns on graph-structured data by
aggregating feature information from neighboring nodes. This allows
the architecture to capture both local graph topology and node attri-
butes and makes GCN effective for representing protein structures,
where nodes represent amino acids and edges represent their in-
teractions. The advancement of attention mechanism [17] further
enhanced GCN models by allowing them to dynamically emphasize on
specific parts of the input data, thereby assigning levels of importance to
different elements. This selective focus improved the learning of node
representations, enhancing the model’s performance and robustness on
proteins. For instance, Baranwal et al. proposed a structure-based pre-
diction model for protein-protein interaction sites using a graph atten-
tion network [18]. Similarly, Cheng et al. utilized a multi-head, self-
attention graph network to predict drug-target protein interactions [19].

Another drawback of MLP is their inability to effectively handle
context-aware data, which could be crucial for modeling protein se-
quences. The biological meaning of specific amino acids and motifs can
heavily depend on their context within the sequence, which MLP
struggles to capture without complex and impractical modifications.
Recently, sequential models, particularly transformer-based protein
language models, have been increasingly applied in the field. Pre-
trained language models (PLM) like evolutionary scale modeling
(ESM) [20] and ProtBert [21] have gained attention for their compu-
tational efficiency and exceptional performance in representing protein
sequences [22]. Such PLMs provide embedding per each amino acid in a
given protein sequence. These representations capture the contextual
information of each amino acid within the sequence, similar to how
embeddings in natural language processing capture the context of words
in sentences [23]. The embeddings generated from pre-trained language
models have been applied to predict allergenic proteins [24] and to
identify alkaliphilic proteins [25].

Extensive research and development have been devoted to protein
solubility prediction models due to its critical importance across various
fields. Given the complex nature of protein solubility, various machine
learning and deep learning architectures have been widely employed in
these models [26–28]. Such tools can be classified based on several
criteria; one of which is whether they perform binary classification or
regression. In binary classification models, proteins are categorized as
either soluble or insoluble, and the majority of the developed models fall
into this category, including PROSO [29], PaRSnIP [30], and PLM_Sol
[31]. The prevalence of binary classifiers can be attributed to the fact
that the most available datasets on protein solubility, including the
widely used TargetTrack database [32], define solubility as either sol-
uble or insoluble. On the other hand, regression models provide
continuous values for protein solubility, typically ranging from 0 to 1.
GraphSol [33], and SoLart [34] are examples of regression models.
Although fewer in number compared to binary counterparts, regression
models provides significant engineering advantages as they provide in-
sights into the predicted values’ magnitude and offer easier outlier
detection.

Another criterion for categorizing solubility prediction tools is the
type of features they utilize. Sequence-based models exclusively rely on
features derived from the protein sequence itself, including sequence
length, amino acid composition, and isoelectric point, etc. [34]. For
example, SVM-based CCSol combines six different sequence information
such as secondary structure propensity, hydrophobicity, and hydrophi-
licity to define solubility parameters for each region by a sliding window
of 21 amino acids [35]. Moreover, self-defined features based on domain
knowledge are also employed. Another sequence-based model Protein-
Sol [36] utilizes different combinations of the ratio of amino acid resi-
dues, such as K-R or D-E, employing 35 sequence features in total. On the
other hand, structure-based or structure-aware models leverage features
extracted from the 3D structure of the proteins. These structural features
can include the fraction of exposed residues or surface hydrophobicity.

For instance, SoLart employs solubility-dependent statistical potentials
derived from the type of residue, interatomic distance and angles as well
as other structural features like solvent accessibility or the fraction of
buried residues [34]. While incorporating 3D information into the
model has the potential to enhance its performance, the availability of
crystal structures for proteins is not always guaranteed. As a result, most
existing models such as SOLpro [28], and Protein-Sol [36] were devel-
oped based solely on protein sequence information. However, the
emergence of modern ab-initio structure prediction tools like AlphaFold
(AF) offers promise for addressing this limited structure availability.

Recently, PLMs have been increasingly integrated into solubility
prediction tools. PLMs typically produce embeddings for each residue,
allowing graph-based models like GCN to be applied with predicted
protein structures. For instance, Wang et al. used embeddings generated
from ProtTrans PLM as node features [37]. Using AF-predicted struc-
tures, they constructed the binary GCN classifier DeepMutSol, which
outperformed all state-of-the-art (SOTA) classifiers. Moreover, PLM-
generated embeddings can be combined with other residue-based fea-
tures. For example, Chen et al. utilized combined features from ESM-1v
embeddings and evolutionary features like position-specific scoring
matrix (PSSM) or hiddenMarkovmodel (HMM) [38]. With the predicted
protein contact map from SPIDER3, they developed a solubility regres-
sor HybridGCN, achieving ~10 % higher coefficient of determination
compared to the previous SOTA model GraphSol on an external vali-
dation dataset. More recently, Li and Ming [39] combined the blosum62
matrix with ESM-1b embeddings to construct a GCN solubility regressor,
GATSol, which is the current SOTA regressor based on AF-predicted
structures.

In this study, regression models for predicting protein solubility were
trained by employing two distinct physicochemical feature sets gener-
ated by both protein sequences and AF computed structures. The first set
encompassed features derived from the protein sequences and struc-
tures, including hydrophobic index (GRAVY) [40] and hydrophobic
patch area [41]. The second set comprised protein contact maps and
residue-level features, such as seven physicochemical properties of
amino acids (AAPHY7) [42]. The sequence + structural feature set was
processed using MLP, while the residual feature + contact map set was
managed through GCN. Furthermore, to harness the information pro-
vided by both approaches, a stacking method was employed, integrating
the outputs of the MLP and GCN models. The performance of the
stacking model was compared with existing regression models, and two
regressors trained with ESM-2 pre-trained model. The relative impor-
tance of each features used in the base models MLP and GCN was
computed from their saliency map. Additionally, the stacking model’s
transferability to plant proteins was indirectly validated using the
Osborne definition of seed storage proteins. A case study involving
coarse-grained molecular dynamic (CGMD) simulation was also con-
ducted on two proteins with low and high predicted solubility.

2. Materials and methods

All datasets and the codes utilized to train and validate the models in
this study are available at: https://github.com/john94kwon/St
acking-model-for-solubility-prediciton

2.1. Protein solubility definition

In this study, relative solubility of E. coli proteins was utilized to
develop prediction models. Solubility was defined as the proportion of
supernatant obtained after centrifugation divided by the initial quantity
of overexpressed protein [43].

2.2. Datasets

2.2.1. E. coli dataset
A dataset consisting of solubility of proteins from the K-12 E. coli
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strain was utilized for model development. The dataset encompassed
solubility measurements for 3147 proteins that were expressed in a cell-
free system [43]. Using the provided entry information in the data, the
corresponding protein structures were retrieved from the AF protein
structure database (https://alphafold.ebi.ac.uk/) as pdb format. In order
to maintain structural reliability, structures with a pLDDT score below
70 for at least half of the total residues were discarded [44]. The pLDDT
score represents the confidence in the location of each residue [45].
Furthermore, to mitigate biases arising from evolutionarily similar
proteins, HHblits [46] was utilized to filter out those with <25 %
sequence similarity [47]. To maintain consistency, only structures
computed by AF were collected even for the sequences with experi-
mentally determined structures. A total of 2983 protein structure files
remained for analysis. This data was further split into training and
testing sets, with 75 % (2237) allocated for training and 25 % (746)
reserved for testing purposes. 5-fold cross validation along with grid
search was employed for hyperparamter tuning.

2.2.2. S. cerevisiae dataset
For external validation of trained models, another solubility dataset

consisting of S. cerevisiae (brewer’s yeast) proteins was selected. This
dataset included the solubility measurements of 108 yeast proteins that
were overexpressed in the same system as E. coli proteins above [48]. We
specifically chose the S. cerevisiae dataset to compare the performance of
our models to existing ones, as several prediction models have already
undergone external validation with the dataset [33,34].

2.2.3. Seed storage protein dataset
To investigate the model’s relevance in the solubility of plant pro-

teins, a dataset comprising AF structures of a range of seed storage
proteins was gathered. A dataset of 200 structures was compiled,
covering 50 distinct structures per each Osborne classifications: albu-
min, globulin, prolamin, and glutelin. Specifically, the UniProt database
was searched using the tag “seed storage protein” along with the
Osborne classification (e.g., “seed storage protein glutelin”). The protein
structures and sequences reviewed by UniProt were exclusively used for
albumin, globulin, and prolamin. In the case of glutelin class, due to
limited data availability, both reviewed and automatically annotated
proteins were utilized. The number of source organisms for each class
was 28 for albumin, 29 for globulin, 13 for prolamin, and 28 for glutelin
(Supplementary Document 1, Table S1). The specific names, entries, and
sequence information for all 200 storage proteins were provided as a
separate .csv file (Supplementary Document 2). Moreover, the proper-
ties of five seed storage proteins from single sources, each belonging to a
different Osborne class (2S albumin from mouse-ear cress, 11S legumin
from pea, zein from maize, and glutelin from rice), were compared with
those of human reference proteins. The names and entry of the
compared proteins were also listed in Supplementary Document 2. The
statistical significance between the selected proteins was computed
using analysis of variance (ANOVA) with the R statistical package (ver
3.5.0), followed by Duncan’s multiple range test with a confidence level
of 95 %.

2.3. Feature extraction for MLP model

To train the MLP model, a feature set comprising a range of protein
descriptors utilized in the field of bioinformatics was employed [49].
The features were extracted with the biopython module ver 1.81 [50],
and included molecular weight, aromaticity, instability index, hydro-
phobic index, aliphatic index, absolute charge per residue, and hydro-
philic index. In addition to these sequence features, an assortment of
structural characteristics was extracted from the protein 3D structures
computed from AF structures. Specifically, the QUILT software ver 1.3
[51] was employed to calculate the hydrophobic patch area, hydrophilic
surface area, and the ratio of hydrophobic surface to total surface area.
QUILT calculates the solvent-accessible surface area (SASA) of a protein

by rolling a probe that emulates the van der Waals radius of a solvent
molecule. The surface is defined by the path of the probe’s center and
the number of discrete sampling points. The software then identifies
contiguous apolar surface areas, namely around sulfur and carbon
atoms. In this study, a probe radius of 1.4 Å and 252 sampling points
were used, following the suggested parameters from the author of the
software (https://github.com/plijnzaad/quilt). The hydrophilic surface
area was determined by subtracting the hydrophobic patch area from
the total SASA, while the ratio of hydrophobic patches was calculated by
dividing the total hydrophobic patch area by the total SASA.

Furthermore, with the ChimeraX software ver 1.6.1, a range of
additional structural features was generated. These features encom-
passed mean lipophilicity potential, mean coulombic potential, surface
area, volume, solvent-accessible surface area, number of hydrogen
bonding, helix propensity, coil propensity, strand propensity, and
number of favorable contacts. Prior to the feature extraction, all pdb
structures files were converted into pqr format files using the pbd2pqr
plugin ver 3.6.1 [52] with pH 7.0 under CHARMM force field. This
conversion step was essential to account for the protonation states of the
proteins, as they may significantly impact the coulombic potential or
number of hydrogen bonding. Similar to QUILT’s calculation of SASA,
ChimeraX also determines the molecular surface of a protein, but it
defines the surface by the trajectory of the probe sphere’s outer edge
instead of its center. This molecular surface is used to calculate the mean
coulombic potential, mean lipophilicity potential, and molecular vol-
ume. The mean coulombic potential is calculated as the average elec-
trostatic potential using atomic partial charges, coordinates, and
distances from the surface. The mean lipophilicity potential is computed
using atomic hydrophobicity values, coordinates, and distances from the
surface. Molecular volume is determined by the volume enclosed by the
molecular surface. The number of hydrogen bonds was calculated using
default geometric criteria in ChimeraX [53]. Favorable contacts were
determined by subtracting the number of clashes from the total contacts.
In ChimeraX, contacts include all direct interactions (polar and
nonpolar), while clashes are defined as unfavorable interactions where
atoms are too close, considering their van der Waals radii. All feature
extractions in ChimeraX were computed using default parameters.

In sum, a total of 7 sequence features and 13 structural features were
gathered. The descriptions, example codes and results of each features
using an example protein (B1-hordein from Barely) were provided in
Table S2 and S3. No exclusive feature selection was conducted, as the
utilization of common feature selection methods such as Pearson cor-
relation, K-best selection, and recursive feature elimination resulted in
inferior performance (Table S4).

2.4. Feature extraction for GCN model

In a graph neural network, a graph is represented as a collection of
interconnected vertices. These vertices, commonly referred to as nodes,
establish the foundation of the graph, while the connections between
them are represented as edges [54]. When considering proteins, which
are composed of linked residues, a similar graph-based representation
can be applied. In this context, the amino acid residues of a protein are
the nodes, and their interconnections—whether they involve physical
contacts or actual peptide bonds—serve as the edges.

2.4.1. Node features for GCN model
In contrast to the features employed in the MLP model, where each

feature denoted a characteristic of the entire protein, the features uti-
lized in the GCNmodel represented the attributes of individual residues.
Three distinct node features, including AAPHY7, Blosum62, and the
coordinates of the alpha carbon were utilized to capture the character-
istics of each amino acid residue. Briefly, AAPHY7 is a list of seven
physicochemical properties of each amino acids, which includes steric
parameter, residue hydrophobicity, residue volume, polarizability, iso-
electric point, helix propensity, and sheet propensity [55]. Blosum62 is a
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substitution matrix derived from conserved regions of protein families.
The higher score in the blosum matrix indicates favorable conservation,
and physicochemical similarity between two residues [56]. Detailed
descriptions on the acquisition of these residue-level features used were
listed in Table S2 and S3.

2.4.2. Protein contact map (edge for GCN model)
In graph neural networks, the edge of a graph are often represented

by its adjacency matrix A [57], which is a [n x n] matrix defined by Eq.
(1). When dealing with proteins, their contact maps can be used to
produce the adjacency matrix of the protein. The generation of contact
maps involves calculating the distances between the alpha carbon resi-
dues and binarily mapping these distances based on a specified

Fig. 1. The structure of the MLP (a), and GCN (b) model constructed.

H. Kwon et al.
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threshold. Such contact maps, by definition, are consistent with the
adjacency matrix used in graph neural networks and can be employed as
edge matrix [58]. It should be noted that contact maps are equivalent of
Ã, the adjacency matrix added with identity matrix (Eq. (2)). Typically,
the threshold distance for protein contact maps falls within the range of
6 to 12 Å [59]. In the context of this research, multiple contact maps
were created using python script, and after evaluation, the contact map
generated with a 12 Å threshold exhibited the highest performance and
was therefore selected as the optimal choice.

[A]ij = 1 if node i and j are connected,= 0 otherwise (1)

Ã = A+ I (2)

2.5. MLP model structure

The structure and parameters of the constructed MLP model were
displayed in Fig. 1(a). The input to the model was a feature vector X→,
which consisted of 20 sequence and structure features. Initially, X→ was

fed into the input layer, and underwent a series of transformations as it
passed through the hidden layers. These transformations were deter-
mined by the adjustable layer weights and activation functions, as
defined by Eq. (3). In the equation, Hi represents the transformed feature
vector at the ith hidden layer, Wi denotes the trainable weight of the
layer, σ denotes the activation function, and b is the bias term. At i = 0,
the feature vector X is H0. Moving toward the right side of the figure, the
resulting vector from the third hidden layer was further processed at the
output layer, where it was transformed into the predicted solubility,
denoted as S. The hidden layers used in the MLP model consisted of 128,
64, and 32 weights, respectively. The LeakyReLU activation function
was applied to these hidden layers. Moreover, a dropout layer with the
rate 0.2 was employed at the first hidden layer to alleviate overfitting,
and batch normalization was utilized in all three hidden layers [60]. To
scale the predicted solubility within the range of 0 to 1, the sigmoid
activation function was used at the output layer. The root mean square
error (RMSE) was and Adamax optimizer were used as the loss function
and the optimizer, respectively.

H[i+1] = σ
(
WiHi + b

)
(3)

Fig. 2. Overall workflow for the construction and validation of the stacking solubility model.

H. Kwon et al.
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2.6. GCN model structure

The basic structure of the GCN model used in this experiment was
adapted from the work of Chen et al. [33]. The model architecture and
its process were displayed in Fig. 1(b). The protein graph was repre-
sented by the combination of the node feature vector Xʹ and the gener-
ated contact map A .̃ These two vectors were then fed into the GCN
model, which consists of GCN layers and a pooling & output layer.

2.6.1. GCN layers
In the GCN layer, the node features of individual residues were

updated based on the features of their neighboring residues as well as
their own. This process is illustrated in the “GCN layer” of Fig. 1b and
can be mathematically represented by Eq. (4) [16]. In a similar manner
to MLP model, GCN model involved the feature vector at the ith layer
denoted as Hi, the trainable weights of the ith layer was denoted as Wi,
and the activation function was represented by σ. The key difference
between MLP and GCN stems from the additional element A*, which
corresponded to Ãnormalized by the degree matrix D (Eq. (5)). The
normalized adjacency matrix A* encoded the connectivity between the
nodes, and the dot product of the normalized adjacency matrix and node
feature matrix, A⋅X’ represented sum of neighboring node features. The
weight matrix W, was then updated to synchronize the impact of
neighboring nodes to accurately represent a protein graph, and even-
tually its solubility. Thus, unlike MLP, where each feature was treated
independently, the nodes in GCN were considered in connection with
other neighboring nodes based on the contact map provided [61]. The
GCN model employed two hidden layers with LeakyReLU activation
functions, consisting of 256 and 64 weights, respectively. Batch
normalization was applied to normalize the layers to mitigate
overfitting.

H[i+1] = σ
(
A*HiWi + b

)
(4)

A* = D−
1
2ÃD

1
2 (5)

2.6.2. Pooling & output layer
One problem with the GCN layer presented would be the variation in

protein length. If a protein’s length was L and had f number of node
features, the size of A* and X’ would be [L x L] and [L x f], respectively.
This wouldmake their dot product an [L x f] matrix. If the size in the first
and second GCN layers were set to be [f x p] and [p x q], respectively,
then the resulting matrix M from passing two GCN layers would have the
dimension of [L x q]. Consequently, this matrix M would then assume a
variable size dependent on L. To address this variability in protein size,
the multi-head self-attention pooling mechanism proposed by Lin et al.
[62] was employed. In Eq. (6), T represents the attention scoring matrix,
which determines the significance of the relationships between each
residue and all the other ones [63]. W1 and W2 are learnable parame-
ters. If the shapes of W1 and W2 are [m x L] and [n x m], respectively,
then the final dimension of T would be [n x L]. By taking the dot product
of T and M, the resulting matrix Y assumes a fixed size of [n x q],
regardless of the protein length L (Eq. (7)). The number of attention
heads, or the number of attention mechanisms applied in parallel, was
set to four. The average of these four vectors was passed through an
output layer to produce the predicted solubility. A sigmoid activation
function was employed at the output layer.

T = SoftMax
(
W2tanh

(
W1MT) ) (6)

Y = TM (7)

2.7. Benchmark models: MLP and GCN with ESM-2 embedding

To compare the performance of models derived from the features in

Sections 2.3 and 2.4, another set of parameters was obtained using the
pre-trained protein language model ESM-2. Developed by Facebook
researchers, ESM-2 is the latest version of ESM and has outperformed
many existing models in various structure forecasting tasks [20]. Given
the relatively small size of the training dataset and the number of fea-
tures in Section 2.3 (20 features), the esm2_t6_8M_UR50D model, which
generates the lowest dimension embeddings (320 features), was
selected. The created 320 features per residues were averaged by the
sequence length to ensure equal feature dimension (1 × 320). The
generated sequence embeddings were then fed into the MLP structure
described in Section 2.5. Moreover, the embeddings were directly fed
into the GCNmodel as node features without taking their average. In the
case of the GCN model, the number of epochs was reduced from 10 to 5
to prevent model overfitting.

2.8. Stacking model

The two feature sets used for MLP and GCN might offer different
perspectives on the specific protein. In the MLP model, features derived
from the protein sequences and unmodified structures were utilized.
Conversely, the GCN model trained on graph structures reconstructed
from residual features and contact maps. To leverage the information
provided by both approaches, different meta-regressors including linear
regression (LR), support vector regressor (SVR), decision tree (DT), and
k-nearest neighbor (KNN) were employed to combine the outcomes of
the MLP and GCNmodels (Fig. 2). Specifically, the meta-regressors were
trained using the out-of-fold cross validation results from each 5-fold
cross-validation from individual base models to prevent data leakage
and model overfitting.

2.9. Model hyperparameters and evaluation metrics

To ensure optimal performance, all model hyperparameters were
tuned using a 5-fold cross-validation technique on the training dataset.
The specific hyperparameters, along with their respective values, can be
found in Table S5. In order to assess the predictive power of the models
constructed, coefficient of determination (R2) and root mean square
error (RMSE) were utilized. In an extension to the prediction of
continuous solubility values, a binary classification was also performed
with threshold solubility value of 0.5. Proteins with solubility values
above 0.5 were classified as soluble, while those below were classified as
insoluble. The performance of the classification was assessed by accu-
racy, F1 score, AUC (area under curve), and MCC (Matthews correlation
coefficient). For the external validation using the S.cerevisiae dataset,
both the coefficient of determination and the square of Pearson’s cor-
relation were utilized.

2.10. Identification of influential features/residues

To assess the importance of features in the base models MLP and
GCN, saliency maps of the trained models were generated with respect
to the input features. Training datasets were fed into the trained models
with PyTorch’s requires_grad function enabled, allowing the measure-
ment of gradients during backpropagation. The models were set to
evaluation mode to negate the effects of dropout and batch normaliza-
tion. The magnitude of the saliency for each feature was averaged across
individual training data to determine the overall influence of each
feature. In the case study on seed storage proteins, the relative impor-
tance of each residue for the GCN model was identified by summing the
magnitudes of all features per residue. The most important regions of
residues were selected with thresholds of 0.20 for 2S albumin and 0.15
for 22 kDa prolamin. The electrostatic potential maps for the two pro-
teins were generated using the adaptive Poisson-Boltzmann solver
(APBS) web server [64] with the CHARMM force field and default
parameters.

H. Kwon et al.
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2.11. Case study: molecular dynamics simulation

The aggregation behavior of seed storage proteins was studied using
CGMD simulation. AF predicted structures of 2S-albumin from soybean
(Uniprot entry: P19594) and 22 kDa alpha zein prolamin from maize
(Uniprot entry: P04700) were downloaded to prepare the initial co-
ordinates and topologies of the proteins. Ten molecules of each protein
structure were randomly inserted into water boxes with dimensions of
39.43 × 39.43 × 39.43 nm3 (albumin) and 45.54 × 45.54 × 45.54 nm3

(prolamin) using the gmx insert-molecules function in the GROMACS
package. The box dimensions were chosen to replicate approximately 5
% protein concentration. The prepared system was converted into a
coarse-grained system using the Martinize 2 script [65] under the
Martini 3 force field. The INSANE (INSert membrANE) program (htt
ps://github.com/Tsjerk/Insane) was employed to solvate the proteins,
and ions were added to neutralize the system. With the simulated sys-
tem, 5000 steps of energy minimization were followed by 500 ns NVT
equilibrium and 4 μs NPT production runs. The timestep used for
equilibrium and production runs was 20 fs. The pressure and tempera-
ture were maintained at 1 atm and 300 K using the Parrinello-Rahman
barostat and velocity-rescaling coupling thermostat, respectively [66].
All simulations were conducted using GROMACS (version 2022.5), and
snapshots of the trajectories were generated using VMD software
(version 1.9.3) [67].

3. Results and discussion

3.1. Comparison of extracted features among datasets

Due to the different source organisms, significant variance among
the proteins in each dataset could exist. To gauge the variation in the
extracted feature values within each dataset, the average and standard
deviation of each MLP feature were presented in Table S6. As shown in
the table, most values of the extracted MLP features were fairly consis-
tent across the three datasets. The two most prominent differences were
in the instability index (38.011 ± 10.269 for E.coli, 36.929 ± 7.648 for
S.cerevisiae, and 61.186 ± 24.673 for seed storage) and SASA
(16,151.322 ± 8318.966 for E.coli, 16,763.76 ± 6839.81 for S.cer-
evisiae, and 23,930.924 ± 10,064.226 for seed storage). However, even
for these features, high variability within each set was observed, as
indicated by their high standard deviations. For the GCN features, a
direct comparison of proteins was not possible due to the nature of the
graph-basedmodel. However, the relative proportion of each amino acid
was presented in the Table S7. Similar to the MLP features, no apparent
difference among the datasets was observed. While structural differ-
ences in proteins across source organisms, particularly in conserved
domains or motifs, likely exist, the proteins used in this study did not
show strong deviations in the features employed to train the models.

Although the three datasets displayed similar range of feature values
on average, it could be worthwhile to compare the characteristics of seed
storage proteins to some reference proteins, especially of the four
Osborne classes. Therefore, five AF predicted structures of three
different human proteins, namely keratin, hemoglobin, and lysozyme
were collected as reference proteins. The proteins were selected to
represent a broad range of properties, as they are of different origins:
connective tissues, blood, and saliva, respectively. Moreover, five AF
structures of albumin, globulin, prolamin, and glutelin with respective
single source were compared (Table S8). As shown in the table, the four
Osborne groups exhibited significantly different physicochemical
properties from each other and the reference proteins. For example,
maize zein had the highest ratio of hydrophobic surface (0.707 ±

0.008), while 11S pea globulin exhibited the lowest (0.544 ± 0.012).
Rice glutelin had the highest ratio of coiled secondary structures (53.208
± 1.706 %), whereas zein had the lowest (26.086 ± 4.081 %). The
differences among the proteins were also highlighted by the relative
amino acid fractions, such as the highest Leu (18.838 ± 0.870 %) and

Cys (5.790 ± 0.534 %) contents in zein and 2S albumin, respectively.
This comparison suggested that, despite being categorized as seed
storage proteins, the four Osborne fractions exhibit different physico-
chemical properties. Furthermore, the statistically significant differ-
ences among the proteins indicated a deviation of each Osborne class
from the reference human proteins.

3.2. Linear correlation analysis between structure/sequence features with
solubility

Prior to MLP model construction, a linear correlation analysis was
conducted between each sequence/structure descriptor and solubility
within E.coli dataset (Table S9). As discussed in Section 3.1, significant
deviations in the descriptors compared to their mean values were
observed, indicating the diversity of proteins in the dataset. The highest
linear correlation with solubility (r = 0.361) was exhibited by the hy-
drophilic index, followed by absolute charge per residue (r = 0.357) and
aliphatic index (r = − 0.335). These correlations are in line with the
expected behavior, as the presence of hydrophilic or charged residues
are known to facilitate hydrogen bond and electrostatic attractions be-
tween the protein and surrounding water [68]. These interactions
effectively prevent aggregation resulting from hydrophobic interactions
and contribute to the promotion of protein solubility. In contrast, certain
parameters, such as the instability index (r = − 0.042) or strand pro-
pensity (r = 0.097), showed very weak or no linear influence.

3.3. Solubility prediction using MLP model

The predictive performances of the MLP model along with those of
benchmark models were displayed in Table 1. On the test E. coli dataset,
the MLP model exhibited testing R2 of 0.469, followed closely by
gradient boosting (GB) method at 0.441 and random forest (RF) model
at 0.436. SVR, which has been extensively used in non-deep learning
solubility prediction models, achieved R2 of 0.443. The MLP model’s
highest performance seemed to stem from its capability in capturing
intricate relationships as a deep-learning model [69]. Conversely, the
stochastic gradient descent (SGD) regression and LR models demon-
strated inferior performances, recording R2 values of 0.365 and 0.368,
respectively. The disparity in performance between models with higher
R2 (>0.43) and lower R2 (<0.37) likely arose from the non-linear nature
of protein solubility, as SGD in scikitlearn and LR are linear models [70].
The four non-linear models (MLP, RF, GB, SVR) also exhibited better
accuracy (>0.77) in binary classification compared to (<0.73) of linear
models (SGD, LR), with MLP displaying the highest accuracy of 0.795.
Therefore, in both regression and binary classification, MLP model
outperformed other benchmark architectures.

Table 1
Prediction performances of the MLP and benchmark models (cross-validation /
testing).

Modelsa Regression metrics Binary classification metrics

R2 RMSE Accuracy F1 AUC MCC

LR 0.350
/0.368

0.256
/0.260

0.743
/0.742

0.728
/0.728

0.822
/0.831

0.486
/0.488

SGD 0.353
/0.365

0.255
/0.260

0.740
/0.736

0.724
/0.721

0.824
/0.830

0.481
/0.475

SVR 0.472
/0.443

0.231
/0.244

0.776
/0.772

0.748
/0.745

0.854
/0.849

0.546
/0.548

RF 0.431
/0.436

0.240
/0.245

0.765
/0.784

0.732
/0.753

0.838
/0.848

0.525
/0.561

GB 0.436
/0.441

0.239
/0.244

0.761
/0.785

0.732
/0.758

0.838
/0.849

0.517
/0.565

MLP 0.455
/0.469

0.234
/0.238

0.768
/0.795

0.737
/0.764

0.845
/0.858

0.530
/0.583

a Linear regression (LR), stochastic gradient descent (SGD), support vector
regression (SVR), random forest (RF), Gradient boosting (GB), multilayer per-
ceptron (MLP).
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3.4. Solubility prediction using GCN model

The GCN model was constructed and trained using the generated
node features and contact maps from AF structures. Along with the GCN
model, the latest regression model, GraphSol was trained as a reference
using the same training set. While both the GCN and GraphSol employed
the same solubility dataset for training, GraphSol incorporated a greater
number of node features (91 features compared to the GCN model’s 30
features). Furthermore, GraphSol utilized adjacency matrices generated
from SPIDER3 instead of AF. Table 2 displayed the performances of the
two models; the GCN model exhibited inferior predictive power
compared to GraphSol in regression task (R2 0.435 vs 0.476) but com-
parable classification accuracy (0.786 vs 0.787). The better performance
of the GraphSol was likely due to the higher number of features, which
would promote a more finely-trained model. Unlike the GCN model,
Graphsol incorporated evolutionary features, namely hidden markov
matrix (HMM) and position-specific scoring metrics (PSSM). Both HMM
and PSSM are matrices derived from multiple sequence alignment
(MSA) of a specific protein sequence, where related protein sequences
are aligned based on similarities [71]. Using the aligned sequences,
HMM and PSSM summarize the characteristics of a set of related protein.
Specifically, they assign probabilities, or scores to residues based on the
observed alignment. These scores convey evolutionary information and
can be utilized to predict protein functionality and structure [72].
However, as the goal of this study is to create a model applicable to food
and agricultural proteins, evolutionary information was excluded for
training our GCNmodel, even with the inferior performance in the E. coli
test dataset. Since MSA generated using a protein of particular group or
lineage represents the sequences similar to the group, it was likely that
HMM or PSSM produced solely from E. coli dataset would over-represent
the group of protein related to E. coli family [73,74].

3.5. Performance of the stacking model

Stacking model, also known as ensemble model, is a powerful
approach that combines the prediction results of multiple models to
create a more accurate and generalized model [75]. As indicated in
Table 2, the stacking model with SVR regressor constructed in this
research achieved R2 of 0.502, outperforming MLP and GCN using ESM-
2 embeddings (R2= 0.364 and 0.453, respectively), its base models MLP
(R2 = 0.469), GCN (R2 = 0.435) as well as GraphSol (R2 = 0.476) in the
regression task. Among the meta-regressors used, SVR displayed the
highest performance (R2 = 0.502) followed by LR (R2 = 0.498), KNN

(R2 = 0.481) and DT (R2 = 0.458). The better performance of the
stacking model compared to its base models suggested that the meta-
regressors successfully captured crucial aspects from the respective
base models. To visually depict the prediction performance of the
models, plots were generated to compare the actual solubility with the
predicted solubility (Fig. 3a). From the figure, it was observable that the
predicted solubility were more closely aligned with the diagonal line y
= x compared to the LR model or the base models, indicating higher
linearity and a higher R2 value. This linearity was particularly evident in
the region where predicted solubility falls between 0.2 and 0.4. More-
over, the stacking model outperformed the other models in binary
classification task as well (Fig. 3b).

3.6. Characterization of important features

In order to determine the most influential features used in the base
models MLP and GCN, the saliency maps of each model was generated.
Saliency map assigns the significance scores of each features used by
computing the gradient of the score function in respect to each inputs
[76]. As shown in Fig. 4a, the most influential features of the MLP
models were the hydrophilicity index and mean lipophilicity potential,
followed by absolute charge per residue, number of hydrogen bonds,
molecular weight, and the ratio of hydrophobic area. These results are
consistent with existing reports on the strong influence of hydrophilic,
hydrophobic, charged nature of proteins, as well as molecular weight,
on solubility [5,77]. Based on the magnitudes of the computed saliency,
sequence-level and structure-level features appeared to demonstrate a
similar level of importance in the MLP model.

In the case of the GCN model, the blosum62 mapping displayed
higher level of influence compared to AAPHY7 and coordinates features
(Fig. 4b). Notably, the blosum62 mapping for the charged residues,
including R, D, E, and K showed more significant saliencies compared to
other residues. Derived from the observation of substitutions in
conserved blocks of protein sequences, blosum62 provides the similarity
of a residue compared to another residue [56]. Therefore, GCN seemed
to put strong emphasis on the similarity of each residue to the charged
ones. Among the AAPHY7 features used, the residual isoelectric point
displayed the highest impact, which could correlate with the degree of
charged residues. From the high saliency of the residual charge-related
features, it was conceivable that the GCN model puts the most emphasis
on the charge states of the protein residues.

3.7. Comparison with other methods using external S. cerevisiae test set

An external validation was conducted to assess the robustness of the
stacking model in comparison to previous models using S. cerevisiae
dataset. Table 3 displayed the prediction performance of the base
models, the stacking model, and reference models in terms of the square
of Pearson’s correlation (r2) and coefficient of determination (R2). As
shown in Table 3, the stacking model with SVR regressor outperformed
all the existing competitors in both metrics (r2 = 0.494 compared to
0.423 of SOLart, and R2 = 0.468 compared to 0.424 of GATSol). The
stacking model with LR regressor displayed slightly lower performance
compared to using SVR regressor (r2 = 0.485 and R2 = 0.452). Notably,
the stacking models, and the top competitors SOLart, GraphSol,
HybridGCN, and GATSol were all structure-based models, while the
underperforming models were sequence-based. The better performances
of structure-based models indicated the crucial role of structural infor-
mation in predicting protein solubility. Interestingly, our stacking
model, derived from AF-predicted structures, yielded higher perfor-
mance than SOLart, which was constructed upon experimentally
determined structures, by approximately 17 %. This improvement could
be attributed to the larger number of protein structures in the training
set (2237 compared to 406). Furthermore, it was reported that the ac-
curacy of AlphaFold predictions is comparable to experimental struc-
tures [78]. Compared to GraphSol, our stacking model demonstrated a

Table 2
Prediction performances of stacking models with different meta-regressors and
benchmark/base models (cross-validation / testing).

Models Regression metrics Binary classification metrics

R2 RMSE Accuracy F1 AUC MCC

ESM-2
(MLP)

0.372
/0.364

0.251
/0.261

0.740
/0.750

0.691
/0.752

0.825
/0.841

0.481
/0.522

ESM-2
(GCN)

0.439
/0.453

0.239
/0.241

0.762
/0.773

0.723
/0.726

0.839
/0.859

0.519
/0.538

GCN 0.414
/0.435

0.262
/0.246

0.747
/0.787

0.762
/0.774

0.838
/0.857

0.558/
0.577

MLP 0.455
/0.469

0.234
/0.238

0.768
/0.795

0.737
/0.764

0.845
/0.858

0.530
/0.583

GraphSol 0.469
/0.476

0.236
/0.237

0.779
/0.786

0.752
/0.759

0.860
/0.869

0.545
/0.557

Stacking
(LR)

0.488
/0.498

0.227
/0.231

0.784
/0.801

0.755
/0.782

0.856
/0.874

0.563
/0.600

Stacking
(DT)

0.455
/0.458

0.235
/0.240

0.766
/0.792

0.729
/0.749

0.839
/0.848

0.525
/0.577

Stacking
(KNN)

0.473
/0.481

0.231
/0.235

0.775
/0.803

0.745
/0.781

0.851
/0.867

0.545
/0.602

Stacking
(SVR)

0.487
/0.502

0.227
/0.230

0.783
/0.804

0.751
/0.783

0.856
/0.876

0.560
/0.604
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performance improvement of around 30 %. This difference was more
pronounced in the S. cerevisiae test set compared to the E. coli test set
(5.46 %). The larger performance gap was believed to stem from the
differences in the node features used. As mentioned earlier, GraphSol
incorporated evolutionary information represented by HMM and PSSM.
Excluding these evolutionary features was thought to help avoid

overfitting the stacking model to the proteins similar to E. coli family.
This notion was further supported by the fact that the performance of the
base model GCN was lower than that of GraphSol in the E. coli dataset
but higher in the S. cerevisiae dataset. Moreover, when compared with
PLM-based prediction tools, the stacking model (SVR) outperformed
HybridGCN and GATSol by 23.80 % and 10.37 %, respectively. Derived

Fig. 3. The scatter plots of predicted and experimental solubility (a) and ROC curve (b) for each model on E. coli test dataset.

H. Kwon et al.
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from the authors of Graphsol, HybridGCN employs ESM-1b language
model as well as all the node features used in Graphsol. On the other
hand, GATSol utilizes ESM-1v (an updated version of ESM-1b) and
blosum 62 mapping as its features. While direct comparison was not
feasible, as the stacking model does not employ language model
embedding, a possible explanation for its better performance could be
the high feature dimensions of the two transformers used (1280 per
residue).

To illustrate the improvement of performance achieved by stacking
the MLP and GCN models, scatter plots were generated for the pre-
dictions made in the S. cerevisiae set (Fig. 5). As seen from the scatter
plots of the base models, the major deviations in GCNmodel results were

at the region where the predicted solubility is between 0.0 and 0.4. On
the other hand, the MLP model exhibited the most deviation in the
predicted solubility ranging from 0.6 to 1.0. In the case of the stacking
model, it was evident that the predictions in the regions where each base
model failed were successfully alleviated. This improvement suggested
the stacking model’s ability to leverage the strength of its base models.
While the base models MLP and GCN were both constructed from pre-
dicted structures of the same proteins, they utilized distinct-level in-
formation of the proteins. Specifically, the MLP model leveraged
information from the protein’s structure and sequence, and GCN utilized
a recreated graph structure based on connectivity and node features.
MLP approach might overlook the intricate interactions and spatial

Fig. 4. The relative importance of features determined from saliency maps of the trained MLP (a) and GCN (b). The blosum62 mappings for charged residues are
bolded in (b).
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relationships between amino acids. Conversely, GCN could underesti-
mate long-range interactions and lacked a comprehensive viewpoint on
protein structure [79]. Hence, the stacking model seemed to be able to
achieve a more holistic understanding of proteins compared to its base
models.

3.8. Transferability of the stacking model to seed storage proteins

While the stacking model demonstrated a promising performance on
microbial proteins, its applicability to food-related proteins remained
unknown. Validating the transferability of the model would ideally
involve comparing predicted values with experimental data. However,
in the field of food and agricultural science, the solubility of individual
protein is not commonly reported, making it nearly impossible to
construct a solubility dataset. To address this challenge, the Osborne
classification of plant storage proteins was employed. This classification
system categorizes proteins based on their solubility in various solvents,
dividing them into albumin (water soluble), globulin (salt soluble),
prolamin (alcohol soluble), and glutelin (alkaline soluble) fractions
[80]. These four fractions are relevant for predicting aqueous solubility,
as each displays distinct solubility behaviors in water. Specifically, al-
bumins are highly soluble in water, while globulins are partially soluble
in water [81]. In contrast, glutelin and prolamin, which require more
harsh conditions to solubilize, are known to be insoluble in water [82].
The process of obtaining Osborne fractions first involves solubilizing a

sample in water, centrifuging it, and collecting the supernatant as al-
bumin. The remaining residue is then subjected to saline water, and the
supernatant is collected as globulin. This process continues with prola-
min using an alcohol solution and with glutelin using an alkaline solu-
tion [83]. The major proteins in each supernatant are then classified into
the respective Osborne classes. Therefore, although numerical quanti-
fication does not follow, the process of obtaining the albumin fraction is
analogous to the relative solubility definition used in E.coli dataset. In
this sense, by comparing the predicted solubilities of proteins falling
under each classification, it would be possible to indirectly demonstrate
the applicability of the model to food-related protein solubility. Based
on the documented solubility of each Osborne fractions, it was antici-
pated that albumin would exhibit the highest solubility, followed by
globulin with lower solubility, and finally, prolamin and glutelin would
be insoluble.

Thus, the stacking model was applied to a collected dataset of 200
seed storage proteins, and their predicted solubility was presented in
Fig. 6. From the figure, it was evident that the stacking model success-
fully ranked the dataset according to the expected trend. The mean
predicted solubility for each classification was 0.621 ± 0.147 for albu-
min, 0.407 ± 0.116 for globulin, 0.310 ± 0.116 for prolamin, and 0.301
± 0.079 for glutelin. Notably, the model predicted some level of solu-
bility for glutelin and prolamin, which differed from the expected
behavior. This discrepancy likely stemmed from the inherent uncer-
tainty in the model (R2 of 0.502 in the E. coli dataset). Nevertheless, it
was clear that the model was capable of ranking the relative solubility of
plant proteins, extending beyond the microbial proteins it was trained
on. Moreover, the existing models were tested on the seed storage pro-
tein dataset (Table 4). Evaluations of Graphsol and HybridGCN were

Table 3
Prediction performance of the stacking models and existing pre-
diction models on S. cerevisiae dataset.

Solubility models R2

ESM-2 (GCN) 0.280 / 0.314*
MLP 0.303 / 0.433*
GCN 0.421 / 0.459*
Stacking (LR) 0.452 / 0.485*
Stacking (SVR) 0.468 / 0.494*
GATSol 0.424a

HybridGCN (ensemble) 0.390b

HybridGCN 0.378b

SOLart 0.423*c

Graphsol (ensemble) 0.372c

Graphsol 0.358c

ccSOL 0.303*d

Protein-Sol 0.281*d

DeepSol 0.090*d

proGAN 0.084d

* Square of Pearson’s correlation.
a Generated by Li et al. [39].
b Generated by Chen et al. [38].
c Generated by Chen et al. [33].
d Generated by Hou et al. [34].

Fig. 5. The scatter plots of predicted and experimental solubility on S. cerevisiae validation dataset.

Fig. 6. Stacking model (SVR) predictions for the solubility of seed storage
proteins by their Osborne classifications.

H. Kwon et al.
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excluded due to the heavy computational demands of generating PSSM
and HMM. As shown in the table, while albumin was generally predicted
to be the most soluble across all models, discrepancies were observed for
other Osborne fractions. For example, Protein-Sol, SoLart, and GATSol,
on average, predicted prolamin fractions to be more soluble in water
than globulin, which did not align with the reported behaviors of
globulin (partially soluble) and prolamin (insoluble). Although the
stacking model did not perfectly reproduce the insolubility of prolamin
and glutelin, it displayed the largest solubility difference between al-
bumin (water soluble) and prolamin and glutelin. Furthermore, the
stacking model was the only one that predicted the expected solubility
ranks of seed storage proteins—namely, albumin > globulin > prolamin
≈ glutelin—among the tested models.

3.8.1. Case study on seed storage proteins: identification of important
residues

To determine the significance of specific residues in predicting sol-
ubility using the GCN model, the saliency values generated for 2S al-
bumin from soybean and 22 kDa zein (prolamin) from maize were
analyzed. These proteins were selected as they displayed the highest and
lowest predicted solubility: 0.898 for albumin and 0.142 for prolamin in
the stacking model, with GCN model predictions of 0.825 and 0.169,
respectively. The saliency magnitudes for each residue were presented
in Fig. S1, showing that certain residues displayed a higher influence on
the GCN model. Specifically, residues 8–31 (region 1), 65–83 (region 2),
and 139–143 (region 3) of 2S albumin were found to have the greatest
impact. For 22 kDa prolamin, residues 31–135 (region 1), 160–168
(region 2), and 171–175 (region 3) were identified as the most influ-
ential (Fig. 7a). Notably, these regions exhibited fewer charged residues
per length compared to the overall protein. The selected regions of al-
bumin had charged residue densities of 0.0869, 0.278, and 0.000,
respectively, compared to 0.367 for the entire protein. For prolamin, the
regions had charged group densities of 0.019, 0.000, and 0.000,
respectively, compared to 0.023 for the whole protein. This charge
disparity was further highlighted by the electrostatic potential data from
the APBS web server (Fig. 7b).

3.8.2. Case study on seed storage proteins: CGMD simulation
To further investigate the dissolution behaviors of storage proteins

predicted by the stacking model, 4 μs CGMD simulations were con-
ducted with 2S albumin and 22 kDa prolamin (Fig. 8a). The important
residues from the saliency map of the GCN models were colored in red.
As shown in the figure, both 2S albumin and 22 kDa prolamin exhibited

Table 4
Predictions of existing models on seed storage protein dataset.

Albumin
(soluble)

Globulin
(partially soluble)

Prolamin
(insoluble)

Glutelin
(insoluble)

DeepSol 0.492
±0.137

0.464
±0.078

0.315
±0.167

0.456
±0.096

Protein-Sol 0.599
±0.120

0.373
±0.101

0.528
±0.070

0.325
±0.091

SoLart 0.659
±0.067

0.500
±0.065

0.565
±0.032

0.521
±0.109

GATSol 0.578
±0.119

0.356
±0.066

0.496
±0.105

0.336
±0.117

Stacking (SVR) 0.621
±0.147

0.407
±0.116

0.310
±0.116

0.301
±0.079

Fig. 7. Selected regions with high saliency and the electrostatic potential maps of soybean 2S albumin and maize 22 kDa prolamin.
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aggregating behaviors over the simulation time. However, while 2S al-
bumin tended to aggregate into small clusters of two or three monomers,
larger aggregates involving multiple 22 kDa prolamins were observed.
The more aggregation-prone behavior of prolamin compared to albumin
was also reflected in their mean square displacement (MSD) over time
(Fig. S2). MSD measures the average squared distance that particles
move over a certain time interval. Compared to 2S albumin, 22 kDa
prolamin displayed faster and more severe aggregation, reducing overall
mobility andMSD. The diffusion coefficient, calculated from the slope of
the MSD plot, was 0.027910 ± 0.0302 nm2/s for 2S albumin and
0.005749 ± 0.0195 nm2/s for 22 kDa prolamin. Given that the forma-
tion of large aggregates leads to increased amount of protein

precipitation, which significantly decreases solubility [84], the simula-
tion results seemed to support the solubility predictions made by the
stacking model.

While Fig. 8a successfully demonstrated the predicted behaviors of
the two proteins, the role of the important regions determined in Section
3.8.1 in protein aggregation remained unclear. Therefore, the trajec-
tories of the simulations during the early stage of aggregation were
investigated. From the snapshots of the trajectories, it was observed that
the initial aggregation began with the contact between proteins and the
influential regions (Fig. 6b), whether in the large aggregate of prolamin
or the smaller ones of albumin. This was more prominent in the prola-
min simulation at 0.15 μs, where the binding of multiple selected regions

Fig. 8. Snapshots of CGMD simulations for soybean 2S albumin and maize 22 kDa prolamin at different intervals (a) and initial aggregation stage (b).
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to a prolamin monomer was observed. The binding of these regions
further promoted overall aggregation, as both selected and unselected
regions came into contact and aggregated (0.50 μs in Fig. 8b and 1.5 μs
in Fig. 8a). The snapshots of the early stage of aggregation suggested
that the selected regions were more aggregation-prone compared to the
unselected regions, potentially inducing further aggregation. This point
was further supported by the fewer charged groups in the identified
regions (Fig. 4), which would result in less favorable interaction of these
regions with water compared to highly charged ones. The importance of
charge-related features, the deficiency of charged groups within the
selected residues, and the more aggregation-prone nature of the selected
regions from the simulation therefore collectively suggested that the
GCN model predicts solubility by identifying residues likely to aggre-
gate, emphasizing the charged states of residues.

4. Conclusion

In this study, a novel solubility prediction model was developed
using the protein structures generated from AlphaFold 2. Based on the
predicted structures, two distinctive feature sets on their sequence+-
structural information and on residual feature+contact map were sub-
jected to MLP and GCN model, respectively. In the case of GCN model,
the use of evolutionary features related to E.coli proteins was avoided
during training, presumably providing more robust prediction appli-
cable to food related proteins. The resulting out-of-fold predictions from
the two base models were combined to create stacking models using
various meta-regressors. The stacking model with SVR achieved the best
performance among existing models in an external validation dataset.
The higher performance of the stacking model compared to its base
models suggested that stacking approach effectively leveraged the
strengths of base models and the information from the distinct protein
features. The stacking model (SVR) was further validated using a dataset
consisting of seed storage proteins, generating expected solubility trend
for seed storage proteins and exhibiting the potential transferability
from microbial proteins to food and agricultural proteins. The limitation
of this study is the lack of wet experimental validation data, due to the
difficulty in obtaining isolated seed storage proteins. Additionally,
although the extracted physicochemical features for training the model
were fairly consistent across each dataset, the adequacy of using E.coli
proteins to model seed storage proteins needs further validation.
Moreover, the lack of multimeric structure data might impede the model
performance, which could be improved with multimer prediction tools.
Lastly, a further comparison with existing regressors on different dataset
outside the one used in the research would make the performance
evaluation more rationale. Yet, this research marks the first study to
develop a solubility model for food proteins, and the framework adopted
here could serve as a pioneering approach for future research in this
area.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.ijbiomac.2024.134601.
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[79] L. Rampášek, G. Wolf, Hierarchical graph neural nets can capture long-range
interactions, 2021 IEEE 31st International Workshop on Machine Learning for
Signal Processing (MLSP), IEEE, 2021, pp. 1–6.

[80] A. Kumar, R. Nayak, S.R. Purohit, P.S. Rao, Impact of UV-C irradiation on solubility
of Osborne protein fractions in wheat flour, Food Hydrocoll. 110 (2021) 105845.

[81] J. Yang, R. Kornet, E. Ntone, M.G. Meijers, I.A. van den Hoek, L.M. Sagis,
P. Venema, M.B. Meinders, C.C. Berton-Carabin, C.V. Nikiforidis, E.B. Hinderink,
Plant protein aggregates induced by extraction and fractionation processes: impact
on techno-functional properties, Food Hydrocoll. 110223 (2024).

[82] S.K. Sathe, V.D. Zaffran, S. Gupta, T. Li, Protein solubilization, J. Am. Oil Chem.
Soc. 95 (8) (2018) 883–901.

[83] W.H. van der Walt, L. Schussler, W.H. van der Walt, Fractionation of proteins from
low-tannin sorghum grain, J. Agric. Food Chem. 32 (1) (1984) 149–154.

[84] A.P. Golovanov, G.M. Hautbergue, S.A. Wilson, L.Y. Lian, A simple method for
improving protein solubility and long-term stability, J. Am. Chem. Soc. 126 (2004)
8933–8939.

H. Kwon et al.

http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0150
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0150
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0150
https://doi.org/10.1101/2024.04.22.590218
https://doi.org/10.1101/2024.04.22.590218
https://doi.org/10.5281/zenodo.1234567
https://doi.org/10.5281/zenodo.1234567
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0165
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0165
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0165
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0170
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0170
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0170
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0175
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0175
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0175
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0180
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0180
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0185
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0185
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0185
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0190
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0190
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0190
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0195
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0195
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0195
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0200
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0200
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0205
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0205
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0205
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0210
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0210
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0210
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0215
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0215
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0215
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0220
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0220
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0220
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0225
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0225
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0225
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0230
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0230
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0230
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0235
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0235
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0235
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0240
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0240
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0240
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0245
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0245
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0245
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0245
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0250
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0250
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0250
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0255
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0255
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0255
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0260
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0260
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0260
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0265
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0265
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0270
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0270
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0270
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0275
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0275
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0275
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0280
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0280
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0285
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0285
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0285
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0290
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0290
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0295
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0295
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0295
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0300
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0300
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0305
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0305
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0310
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0310
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0315
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0315
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0315
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0320
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0320
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0320
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0325
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0325
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0325
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0330
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0330
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0330
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0330
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0335
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0335
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0340
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0340
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0340
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0345
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0345
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0350
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0350
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0350
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0350
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0355
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0355
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0360
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0360
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0360
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0365
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0365
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0370
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0370
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0370
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0375
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0375
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0380
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0380
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0385
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0385
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0390
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0390
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0390
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0390
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0395
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0395
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0395
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0400
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0400
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0405
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0405
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0405
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0405
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0410
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0410
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0415
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0415
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0420
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0420
http://refhub.elsevier.com/S0141-8130(24)05406-0/rf0420

	AlphaFold 2-based stacking model for protein solubility prediction and its transferability on seed storage proteins
	1 Introduction
	2 Materials and methods
	2.1 Protein solubility definition
	2.2 Datasets
	2.2.1 E. coli dataset
	2.2.2 S. cerevisiae dataset
	2.2.3 Seed storage protein dataset

	2.3 Feature extraction for MLP model
	2.4 Feature extraction for GCN model
	2.4.1 Node features for GCN model
	2.4.2 Protein contact map (edge for GCN model)

	2.5 MLP model structure
	2.6 GCN model structure
	2.6.1 GCN layers
	2.6.2 Pooling & output layer

	2.7 Benchmark models: MLP and GCN with ESM-2 embedding
	2.8 Stacking model
	2.9 Model hyperparameters and evaluation metrics
	2.10 Identification of influential features/residues
	2.11 Case study: molecular dynamics simulation

	3 Results and discussion
	3.1 Comparison of extracted features among datasets
	3.2 Linear correlation analysis between structure/sequence features with solubility
	3.3 Solubility prediction using MLP model
	3.4 Solubility prediction using GCN model
	3.5 Performance of the stacking model
	3.6 Characterization of important features
	3.7 Comparison with other methods using external S. cerevisiae test set
	3.8 Transferability of the stacking model to seed storage proteins
	3.8.1 Case study on seed storage proteins: identification of important residues
	3.8.2 Case study on seed storage proteins: CGMD simulation


	4 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	References


